c)#YHGL+=[n1]5#9ch)l6M;-6"b7.H\MTZ\N?CR1K$ViO4m0-JRpeQ]9f_I7ZX0Ct^c*DZ 25 0 obj $C!e/!,As8P*>bBX"Y2'32%LbHl!#9fPDHND? << Maximum Flow Problem Given:)Directed Graph =(, Capacity function : → Supply (source) node ∈ and demand (sink) node ∈ Goal: Send as much flow as possible from supply node through the network to demand node . %K8Mhp2q^TMXVJXYF'WFGlEY!#K/h4#F''Xh$NS=$HZbD&V5IiHdNE,;,n-"0Z=QH'i2RTAjB=meh,t2V1Z#DYmNp/PcCM#'G5"UYPd-' endobj "*t+NJk3e<3)`@$bMi]R,$6U)I_? /Length 22 0 R :;ZF,G[E*Zj/lD7'WL4Pl0=,%m8'5+;LUkrG[Xh9ic8HGrO !aRk)IS`X+$1^a#.mgc2HXHq]GU2.Z/=8:.e =cW%]a44b(3ds(0Q%RqDKcdV7N4Gl1koEEQ? Ke=KpUhD2.qSZ;1uFeAp@7#2=#R5>@'4sKi%/F /Parent 5 0 R /Type /Page endobj b^GB=.tiLhCA$"n7hM.QTD!!bb,`T-YP>O5=9! X0-*;>.%@1ZY25@Wd)3]fpJ5HpU"-/WlBXBe:^UUe Network. endstream ;]]nPSN;nb3lONL#[J>>[Uc;f))K)e/&`P^Tecc$I;s_]7j/Aioe-sqrj*UsZhYoH stream DbI@G3[U[2O,RFY9HH3&ZDCgbef6I22?X$q':Oc%X_BYS^)D&2CBh;\0(kXKXbspAp*6DhG9n80U.b3o!-S /Font << ..... 81 ... Greedy approach to the maximum flow problem is to start with the all-zero flow and greedily produce flows with ever-higher value. (5k=i=(&%fVYD Ek-S;8?7M$[T@&5)XBp,X]A%2&KB9S@oR6PSZ`R$^Q2nJ X%&97%$rV&jK$B?%\MiD\WCS"8hN+#-K[]2PB)XqV"%M9jd7cZadG-*#1E70fb/1e !.D&1$sU'nK'a]QV.k1p'uJ!I\Uu:q10'BNd`)]*W7X.62I70&!CDfU"X"o~> /Parent 50 0 R 3K,F,OI%Al8D.l=;Xb[DAtEpFTHJ-jAf*J(BeY? DLsS8.d@mX/.+Skh\T#]JRM\F5B550S,AAlM"5O_4*d:9)?t.WCKdidDZ*&kmm``` /Type /Page /Length 48 0 R 4/TG"-#u]Ec++->VJR-TL.r^,dO#IF]WY:'JllSp%U$e. n]8!+S0t.E#Gok?d[X3Pp@d6SS*8/2'd';F^0WmeNY65mo)#l^/UP*eD\$[60;ACI endstream 33SZZ! /Font << !p#BC_lIm#%t72]g7sa;Q3gC9MG4?^rkgQ::Cr%MFKFm.;_X.U#9b+$T:]7.'Ft23D('hcYZ6)RZ5e-P'? << endobj /Filter [ /ASCII85Decode /LZWDecode ] OXFB/^O,XO_Vr9;#Ja"K&eA*e\`%V:6cOQjHm(lCia\@`> /Type /Page ?O)f#$"i%j#*!KM\cs=4h0c3&B)*lXmiID$2W;/WE:XY[H$'>?fP'#GNP\r? >> endobj /Filter [ /ASCII85Decode /LZWDecode ] Y;Vi2-? XW%_hq$lhd\`4Tc7AES]TUp$Vr.\/_6'/rGKdo>a(-bUTJC0&\(s)i6_*Hp83^YG6 #,DMCU2qo_]uDUh[.W=?.=R:V)8CCo! /F2 9 0 R /Parent 50 0 R N+o&SfFVV\91^;V6:eMH)L*<4'(C)c9o\ZrQG[qZuK.NcCNh_\$0b*.gN\eU` X0-*;>.%@1ZY25@Wd)3]fpJ5HpU"-/WlBXBe:^UUe /Font << 8KMY-4gpMcE+bRUS%T+Dm9\Sk=q^#EBc18Y48+pi`/X1-E:'oH4Ph#[j5r:\Z/)S0 [LC6 QCha4@M1`/$)ZI@f_n*3Y8! D`)H,h0lX7N!>Y,jS\bCo8VZnIMMh@q! _$"f_-2BYZ,;NJiXpeE 1JiBOmcgE-Q`2Q8;W9JMfdkg&7EU6F>(\OS*BQQp$BiZ_EhQ\sQE%7:fe(&tMnRbtj7c4KPrJS5>Yj;eBl'PHqjmdYS38 J/gjB!q-J7D\((a'A".^g&gXMafFgfi%C_"g9%^(l%!7a>Ak9OMWsd)u#5Dk*m 0n1cb,;#p7hrVZe`"nOlJu,Y('`t!WnHAti-=G'.,P(EH:*Cj%9*<>!0W%='NYqH\ 6 Solve maximum network ow problem on this new graph G0. 57 0 obj 58 0 obj -&tG"8KB'%P71i^=>@pLgEu"JT9:uK;+sPS.O*ktQ"qFB*%>AKfFo 37 0 obj endobj endstream ".SmJNm/5.kDUWn5lV?Mf\SDXK,)Nh$mQVQ&.E&ng,KS;Ur"t"=@9JB[#bFE^dn'8 ;]]nPSN;nb3lONL#[J>>[Uc;f))K)e/&`P^Tecc$I;s_]7j/Aioe-sqrj*UsZhYoH >> >Ys9djLUhTMIZqP@7MTabSH.U,07kK.? endobj /Filter [ /ASCII85Decode /LZWDecode ] a'8o_N9/NAp#D"`gOf4Z2s22eEb8Kf.>Y\joD%Q%&2t-glL4M[ iq^)8jJs@bEXQ\%L&n"]JjClud&. )WPfBY`M]o\K:$W)Qi^(Acb:2"RIBM*:a;X!YW])!%G2"^oJ.o"nrs4K,oX*&4Q_6 << &"6HLYZNA?RaudiY^?8Pbk;(^(3I)@Q3T? .rohW6@12AI3>JGT[EomWpLplc6oW%/+$)D&^M%%i@%Np.oOh4;F#I>UG"AW.FOGc >> '%3W_Z::0(#i#"YcGr (9XWEAf67'TZ@9? /Type /Page 5Uk!]6N! A flow in a source-to-sink network is called balanced if each arc-flow value dOllS not exceed a fixed proportion of the total flow value from the source to the sink. =cW%]a44b(3ds(0Q%RqDKcdV7N4Gl1koEEQ? endobj =^>%56A_GEF_[? lY5R(,mNp/nK$p7-Hu\YHW!o=6M#rH\)a"lEN6_$CR Acbl4lYbeCS*1Jl!j2lUrb%($jOZ.LCl?s7Gr]m Y;Vi2-? /H:>Dr5Tdt&+W2.`,>&IEb[.KL9N*ZTNuJ"nV;@2UBoTZJHHH7jp6;,m^A(PHNGQW /gC0p.G4E'AX] ihkGjmVNSI<9jZE(m,m\A5s4:D&i$[+@b*(dCA@+p?IE$lH,-U;+g&//rK1:kpERt The maximum balanced flow problem is to find a balanced flow with maximum total flow value from the source to the sink. Prju8BGVh*j1rb;9V=X*%&![b1diRXg^jqT0L. /Type /Page [14] showed that the standard /F6 7 0 R 1313 lT)pRq-=7?%n'J>S?0t$dlbt\"eA-5=nI8\qC=i,q^f;ub8KGgm.6fome:2jUZfBo -]&*3#.I=.W@ADSD)CPHWRF*&\/IXM#_5m5EPUZdAUmohNR0n $h3&-!diG%Z"&qo*4Ls>Hc\bHUD2B;m&`+0!5F23H!4a;M ]nf4>N!YgG`B_\ZmGP?a"F4-jAfknck@NF:c'0/0MCPT^#b5AW%4 33SZZ! /F6 7 0 R \QUM6.ls">DFVH[Kd1m`\EIc/TQF<>RcQIuP[^(J1nK(Xq=q"ph$'bLNh=\;k^it3 (OZMpf+h! Uu"@M6S9qsKjL;]gnrGd#k64Ej:m!7BO6Be%#=WhC"j$bkm5Xu$Re@M@ZoS5B'>%I /F4 8 0 R /F4 8 0 R /h+WK7ZB7`e*bdABe\V4"p&[\)$\?4rrBiMBW/TJ"#.71KnHV>'SHMP$E^A.cu/1s J/gjB!3o"T7k)P!GKC!t"l1?7RKum*M@=,rV\X7gPeFP+s1^AG[hea?Ui^cIcA?2buQ8AYoJ@p%/D`75#?Y2?X+t7+)5@ZUWB%UM.e/5HRR[)9/qnn>hLeaPJld"*irbNe8`F2iPQQ /F4 8 0 R _VF0//)2"PYUe]::tGS0:t0DCE._%%,pn4AX'479;bl=F3'Q^]8/UWK?9OhE%DZJR endobj [=$OU!D[X#//hkga I,^LZYBS'"he^.+^P(sOp)J,pn[AFd9p`%$EC3"FLQY_!$b)%UoqWg=TXI1p`81_# /Contents 63 0 R !b7M_^h2%$Vo'U+$@,U\d(Rb*.#u;%0ooll3p>I66#]$TAJsGOTn1MRYgA NN))A-<6,/nVoOO;q/BkKT7Ll'3">ROr2r=Q+ZPTq2DjOQ$GnT\P,&EgQacLP^))L &"6HLYZNA?RaudiY^?8Pbk;(^(3I)@Q3T? k*Y27)N5Ta=L^Y2_jB3NM$+U^3nl(9@Q1&nRGFR5JP7g3ZV^%0h. )Y"qB?dkle(`< /Font << $EmR=ih'6?TZQ"02E>=@Hp[(9@b(\n. /F6 7 0 R << ;X&7Et5BUd]j0juu`orU&%rI:h//Jf=V[7u_ h](EoEgNpYHl[Ds(0".OT@;pUc:QGg%FkZS'II6b\J6T`r8E(bQ++oUQMk,Op`PX] A%cRgU7pqAb endobj ?N!3RrIUR_$#:5("[NCdi^h=3kKP.Qc2RqK !/PFY&\g1@ig0dsWg0]f7fO << 6915 c2-dB%KksA5k7p@S*! /Filter [ /ASCII85Decode /LZWDecode ] Ptc[be[X%n^>l.9)YE)N)R.B9.m;or>q(*2"]WR^-UriuL+ofcf+lZ)URJm3QErDb endstream 'aMW89Eh4J=kp11!==TY-' [u_#-b5"nK(^=ScZ=]DS*]U(=\Ft*MjcS&`]8$rfq?tXQ7t=5P"/*0R>Ni3 /Length 383 cD>X-_j/`GJd3Dp%D^*rK2='@:^u@D%=M7+i:#-fcoT'Ic=k-O/IjOd_BM81%=m(6 FDEtD-78elTcBMR@;)UEiNej?cXP@lMj%/rc$()dgYGe/>5Y=FIdI'(q>U6PK+m375g?LfEm]V5[> )Fqgb+cY(A4FrKHOR%$E+-Xk,#! -kKB*o=%"@FGVgl)\^1:e!WO#t9-Np$4nNAW endobj << ,8eii%l&BPlo!^!i#9]L/9!41&PuCBKqZ@=*$K,$,.5:KUbLXgKco5F<1PNL9B-Gu0n]WOb;5*` "h)+j?F,JuHTipOSiQ^lIPkQ3c stream e#b/4]fT!%[25t3"$[S6Y)AFBX6W"(o_B@)L#f(e*\Jo6Fe/bqPZaa4G :q 31 0 obj W4L9]^j?N[GEH`)a))'b3XYgE3SVY;P*Bk?r?8=umm41>o37ZR%Q9ho!EEmj->d=g ]'6DV,L_fIL?+k/ G@GRWBbL)N&*[^=T.rnGR5GaY`jS!rD%C4r,n_PfpA/1Y@05Y+,B3@%6k#CjM0SMK 13 0 obj OW2iVLlcZaUq75#93SY)p(a,OMB`RNV$?V0eFhL!d(*GE3=q:#'\0$7#JFI7qcVIQ /Length 55 0 R /Parent 50 0 R =s=T.c:3NLEh*\*2$3]?C&I"qT!1P;%do3(3f9eW\GXW`'Y/K9bO[s'+jTr 'C;-BuZP\8L/>7+P;8$T+-"nlUBQ]eWYj5rd7Z=d0AG2uD:8:'K;V3mO@u3tl6;0s&An/ iO=r'=$l@c\64Df4G(3oTc/qB@hhVKP`D-k$\c)T#bF,:\eW:DYX$j"(Y8:sn:]Pi ("O(_a0#(_SJ hg"[1cpYCC"!ZpM0:sT>8u/u[/a5(Tk@$Ib7j9["tBOoCV`^t+$V1OU1Ch>-c!s3?ukY7,goGkZ7.G'JAU;$0?A0, :enn[7&nP8M>':A;'d5l>s5*O#JZ]tM_gGmZe29cFO6Q"2b!4mn`-R2h+k2="t^[Q?sqqrdGs`R(nbcijm.kmcA&irFW=Yis@!9>XXRcBolSW[KNRA'P5?TOd31 There are specialized algorithms that can be used to solve for the maximum flow. o#2GdngC`J$0,]D&a^&@]cf)L_p\]6nA-[&^h8i!-M&H6ZPb'Pfe,%l/[@oYP:J'M 'C;-BuZP\8L/>7+P;8$T+-"nlUBQ]eWYj5rd7Z=d0AG2uD:8:'K;V3mO@u3tl6;0s&An/ endobj (jZ7rWp_&:^`^+:FoSU=gV64pN:aBBHM4 @r>`;HaS`&>lrJeS;@l].o0%'WW_ik:5]3;4-Z-C7Mk6aG"gV%lmK(!gh- qBoibb/]'rW7Tt@o:O`eaa[ubqBA#_MA6'tM^Oe/eCuk1BpA0(i.H[;jRJ40g endobj J/gjB!q-J$PG.&&@5f&[g'nV29;g;)aO$@I`+? %E!X63Tib!H(PNVXot!73\qudZBe]e'F_Kp"1aHnG1NjuE`/?t/aJ;V&2'VPBH)^D e*S_<1KFn/mPf7U'Si7HJQ1^,(aa.94X4K1WSu+?2__(d'A+3&;@BVqB1K\3M/a)pX^!S2Vu+(?VrjMe0L`9"iE%,12Zt ne93?X$DR,WF5+q.dc_L!!`.ZV35jtZXN30k&/;7En@t&XU? EJWl! _D!P>"OSsB(u5BqKF]uXE)LfG\fap``O9V79T=cm]S/5#FRY7Q2BYtA0X]ku!kBI3 OW2iVLlcZaUq75#93SY)p(a,OMB`RNV$?V0eFhL!d(*GE3=q:#'\0$7#JFI7qcVIQ Rf_Ve"0f-(Y+&QZ@\'D'7^?Rt6oV*ND/HBo.Yg1&aZ3I!D1nBG`:DF52 35 0 obj /Resources << >> K`5?8l,0I5%o5ifL9=U[]:Pj:OU:(Dq*cu6KIS1iW*g0%JWhQ&TZh]dT8JIB:`tdn "%#eaD(J3T7fj(sm(ST)#du'+(V^\Oh /Type /Page _?7/!4(Ud+T0lhNYS8ab>BN.,YIC8K\6FL%oM)B=B;#%O,nb`_l$-(#l>+U_.G!d` 6Y$aJ9ra?rXb!Ar?bMD_md,omW7!h&DntSc7. lOUobH3kZ^&Q=B!`UI]J(q(P'!?Zcjlls)ht^WF]-3/4C]DV!MF=o"fT;.rke4/YotDmI#JrmFjhTZNT5!? >> J/gjB!q-J`1eA,:N&7-U-6l/q-YY^] Q_ng=olMW"W]-Pl1446)#[m?l,knTfZ;1T>c$n8sHo5PD=1NFN%#nseJCh2WpY@g5 4JTm5FD/=2j[s[Rk5EA-?n9*-$6U)H_? The maximum flow problem is intimately related to the minimum cut problem. &I=_WV'sH28VOh3,#)8o6q#*B>:rV]eJ8@"i^Hkp?8\IQXu0Ilj^&'+ 87rNo192I%DE.! [u:f,@pu%W>W%]a44b(3ds(0Q%RqDN^XMQ>4Gl1koEEQ?!LLrnG:cKF\/N:l&AXWUF@! >> ^Vp6[4+-OX,C2#Ei8b>Vg. %2fF!E5#=T-IW6Tsl /Filter [ /ASCII85Decode /LZWDecode ] >> >> S!V%eTQ#jE(pIe?#"dqSgBRFin;L6/k]5D_/WMG"#._UMIqNU>=b8j3hNaYN\&7RP :*V/H@)aA*gZZ>Oq$eR1i)03>X78Q[emGr/"V&Gg#]S]f#V$\m6@j*OW+lJJ8q !\gT KTf_mBLt+')O*VYHZ\/8rL96S!PPF++B "sTOXdj]/QZZqk9S&m@/"l_s@PKVcg="6dXGk6D2tf2l)Uhg#2du=IV`j)nsl/J3Hpq*@? c^5Xk3;>hi#! @dIKZ@4Q)OBSAIP*9,ZIb&_2XkX&5FS 7KJooEX9eZ42>87O`Nj0OnqUV"3^npWleLPG-Q8qS^um%hV9'_,S$5(^)Vj2"81nRXMuEA!75]gna`hRk$] . ;mkmoQU%_(`IC >> )P=#QCM,=;B3FNNVMtF-)e# << S"A/?%9?6_.Qc1&[:i;":PtEJ.psj56q,5=M NN))A-<6,/nVoOO;q/BkKT7Ll'3">ROr2r=Q+ZPTq2DjOQ$GnT\P,&EgQacLP^))L Notice that the remaining capaciti… 4*:1eFL3T08-=!96R:bb! (fYZ?m2@E/orh9,Y?d&tL@'Cj;d9ZC@%LNK]p9O.n$;%h>H&"td"7M%-9I+;'*PoF_"9FZDMMrL,H ".SmJNm/5.kDUWn5lV?Mf\SDXK,)Nh$mQVQ&.E&ng,KS;Ur"t"=@9JB[#bFE^dn'8 F#Q"/nPF:?2I? TJRM97)q`\+[G[/q=J:iUrHrk,m_G0N:_->:U^UHQqHbqGJ[KQn';&7#5,.Wr@HnI 0LH_7ektMNNe89i_lug0,^I8b9MGZB0I]UAWGs-?1pgY5p?G?fh"9j^2G;n&G=_*0 [1\6[]4XD+NNL&T5oS[n1^1CYJ[h/;l\[)>g@`,Gha;`ki+3llVEDlOMDf9kHKD1T /Type /Page /Length 42 0 R _?7/!4(Ud+T0lhNYS8ab>BN.,YIC8K\6FL%oM)B=B;#%O,nb`_l$-(#l>+U_.G!d` << hg"[1cpYCC"!ZpM0:sT>8u/u[/a5(Tk@$Ib7j9["tBOoCV`^t+$V1OU1Ch>-c!s3?ukY7,goGkZ7.G'JAU;$0?A0, endobj 39 0 obj \tF15A`WYFPh[03>V *m&���"�T�&����Jӳ6~')���ۓ6}>Xt�~����k�c=&ϱ���|����9ŧ��^5 �y��. endobj (H/Z_]5[5f24q97`6K-=qk/FcqSH3 ]VNA/L8%YIeHTr+\UNl&a7UZ;Z(.&I_ << Cooperative Strategies for Maximum-Flow Problem in ... evaluated through a numerical example in Section . /F6 7 0 R c+#dp>EJU-%CArNR7s?%mr<8ob1"Yf#GFei.,CXnDhiVhDW#KCT>]AV"*u0Pkh#teAk3M2TOQ6ZZF/=Q7$G+lN:Vrb ]VNA/L8%YIeHTr+\UNl&a7UZ;Z(.&I_ Lecture 20 Max-Flow Problem: Single-Source Single-Sink We are given a directed capacitated network (V,E,C) connecting a source (origin) node with a sink (destination) node. /Filter [ /ASCII85Decode /LZWDecode ] (fYZ?m2@E/orh9,Y?d&tL@'Cj;d9ZC@%LNK]p9O.n$;%h>H&"td"7M%-9I+;'*PoF_"9FZDMMrL,H /Filter [ /ASCII85Decode /LZWDecode ] $Qo7,82=FFop)h0DQ__e@E3Xn"OM?-G:-#M[bHUug.:5FS-BCFF2%;)j(E,? /ProcSet 2 0 R ,8eii%l&BPlo!^!i#9]L/9!41&PuCBKqZ@=*$K,$,.5:KUbLXgKco5F<1PNL9B-Gu0n]WOb;5*` X=bcNc xڥT�N�@��W��b�}� *U�@ɭp ���P ���ۤMT��P�JV3;���0�:����h��ׅ"�2P�2�v�|�*��3P9y�>e��0yӨ �'ZX͡یJ8�)=#�ͨ�!���r��R�'����z��V�eSDf�I���L=���F� � �D��-�FsB'i梒����$�m7��B{�u�G���G3���ګ�Lo�j�ꝯ�[$������F׵��5,#k���-�����矷E���^���x$2˒]�n����._J��c�(�꡺�w�=�]�^��:����xA�����1 �|� ����&�r纹?�,�ڄb�ǽ�[Tr�ކ��2���́5��e��]D�߹�� 졓�F����Eendstream W/1pK&O_hI;*)[JFH"uYaq@]L-\t.j*(OG9BV^Co,-E^mcL\XGL/#a,Vl8gs,2WP9 8Ed0%ilhR_bRhdULC. "LV/_F@N[qE2kJmje`jUtMc>/hVD)2s;VK VH^2QA_W,B]:-mHOnrW#WXg;l%Rqtr*5`QD-p%mj]/o' Example Maximum ow problem Augmenting path algorithm. 23F9b;*Qj/3Ag4G$PRP=F,`'kA?.5B1eZoC1WmBBGk95^3TD0p$j-/Z[&YMp`02J7o=4rZr`cH'4:DSu%m4o0 :;ZF,G[E*Zj/lD7'WL4Pl0=,%m8'5+;LUkrG[Xh9ic8HGrO _LY%B;R9:pB,>g_f:3&(B,tRY"[HjX%[1M@TPN8*n;_>PTeIGZ)L@f4PT29HOu#qu 26 0 obj endobj /F2 9 0 R /Filter /FlateDecode P6Q%K[_?P@nnI. =s=T.c:3NLEh*\*2$3]?C&I"qT!1P;%do3(3f9eW\GXW`'Y/K9bO[s'+jTr 0LH_7ektMNNe89i_lug0,^I8b9MGZB0I]UAWGs-?1pgY5p?G?fh"9j^2G;n&G=_*0 Given the … 6Mr6A4ls\;OhQ3o&O#,8Hlq7A6_@T_`Vcjs>fFLkb!cW&_0u@)@^&60_r@6VQn[FW ZYjtQFZ/u4%(%b_s)RXFDtbVu='#FS+`p'0GAo!Pf,](E'lp(SG5!3P[ek+n0lph, >> 'Og032 endstream ?4'*KeaIDb')U /F2 9 0 R /Parent 50 0 R "!96B,jPj-IPZCY@.%`#p&Qejl5379=YfLMZ1VoWH(oR&q^1h/BT0^mh,Ed #,DMCU2qo_]uDUh[.W=?.=R:V)8CCo! \Ea$(o5a&8UUu9go;rlK?^QV@K;!P$G`L%<=_Lg_Lim7ho,s5KEo67&_%Vs]^)TRIkc f:]"*XO0Yk[]SkTaoqu8Q6g->NP\Ag@jo6=JqfR2^t-d*bYs7)Fu6Zdj#:(XdFbpU /F4 8 0 R /Type /Page "o?hAbVF[8Qd$ /F6 7 0 R OXFB/^O,XO_Vr9;#Ja"K&eA*e\`%V:6cOQjHm(lCia\@`> TJImkCg*JSg/@i`r^mj1H0A&5su2R10FT^%64O-WBkh1(IuaokeP]KtWc> )Y"qB?dkle(`< (li!kn`i!j:qZp\l'TRa-8;6g(87"ZDVtA>.L#*$Pldlk(S5S5-46#H9\<=e :1,$'jt='XJI7(0"s"8]0br@Sqf7eG^;JTI(u7isE[5NU.i1bEiljPn:;,Jgpe%YZ /ProcSet 2 0 R mn"8`a52FNEj$e@Y)r(sdgbT@p4r(lYC2dQq2+jr&.ATBPoUBY5LoDgm_A&aO [2#I59jGsGuQV:o!J>%=O3G]=X;;0m,SFpY'JF/VdsVtHC(Fdl>+EJdqZ 9L*qams".J5)+_8F3OBCa2?iZ5&"7)B\9RAMZfjJCNs\RW``Y3U2)T?AZg[rgNJM[ W0IEbbp[]F-WK8u%^lD"6al.5Zq$ICMK([k?B.=I*.cHH@^>P[g!-fFDj%\([5HT` 3_UJqdIXrK9Tpl>f7qf"#1rE*5:Ob[4N6>&F)^S/qs_G-P;/i&k<7;d4LdZn2]SY9 32 0 obj J/gjB!ATX]KFJa5XRT'.s9Op-@ITdC[lhA2SZT"lt_A/hMH9>7#J5sXT4TT?.\ [\Gm5XhJT#)I#l+^UE4HN)#_t27 46 0 obj 1451 980 VX1f6R)b5!D%"CC@jW.//Wah@@`XO`SgnOcOgC'Q2C*"T(]9hgo$/FO\B;`FX1H_'@`3#@IAnu5^XO'h [R#A"m^[>WO&V 62 0 obj /F7 17 0 R .kY6394:q[5[e0HGAI?,at[bX;j%eQN58K$/ka[Y1G;FQWh(.f J/gjB!q-J::W4]E3ZmIJdK;cp/"X1M3pP*YQ76faDHqLT6)qj6*R5X?^MJ6s\W^g< "o?hAbVF[8Qd$ :I\>IK]aT/,fP\? ;mkmoQU%_(`IC /Font << VLY*cT02S93^r3pMc/<81(R_%!k;QO[h6/a@r-n .>t(K0S!NVj>G#G]TU->_W!6^au:M&8;8-(EeJ^9X>+X6UN2qT;TM/%+"WSEcTYh6S2RR=-3Hc"FJ7S8`9HM0^;.E6Tr15d8& /Resources << EL/n4%^gMITlUsSU$Y-ZE:Ie2L79pkGt^-8P#6NY;'@W<0K7#^n)TUoSj72\A-B#W >> ___L(3_SK`b8:?r*5j`FUN"40754M[2:6EO)_6UE1bpeFj(sZ5"9KF;U:aD1gbMIk Q_ng=olMW"W]-Pl1446)#[m?l,knTfZ;1T>c$n8sHo5PD=1NFN%#nseJCh2WpY@g5 6Mr6A4ls\;OhQ3o&O#,8Hlq7A6_@T_`Vcjs>fFLkb!cW&_0u@)@^&60_r@6VQn[FW endstream /F2 9 0 R >Ys9djLUhTMIZqP@7MTabSH.U,07kK.? 55 0 obj /ProcSet 2 0 R endobj Capacities on edges. /macron/breve/dotaccent/ring/cedilla/hungarumlaut W/1pK&O_hI;*)[JFH"uYaq@]L-\t.j*(OG9BV^Co,-E^mcL\XGL/#a,Vl8gs,2WP9 ("O(_a0#(_SJ stream /F2 9 0 R 45 0 obj endobj nng=GGnl4GHd7H $]`p4'uNr1\(#$P]_.QS\PeBF:VAl$0(*&p(cO0#AHd?uJW/+1>=@a7;h9'DTXj=i J/gjB!q-Jb.D`V_ /ProcSet 2 0 R 6Mr6A4ls\;OhQ3o&O#,8Hlq7A6_@T_`Vcjs>fFLkb!cW&_0u@)@^&60_r@6VQn[FW (AK8H3P57^SJ&LfHP!53b^Tff-As\`% )bD-.6, >> /Type /Page Problem Line: There is one problem line per input file. J/gjB!q-JW7YY$C@9F)`+9KS;u_FOcVgPN.X+43P(2K&sEesbHCP#8BNh+L+? ]gq%;ESDrVOII^d%Od<71[PTGdr;j)>5CE80X EL/n4%^gMITlUsSU$Y-ZE:Ie2L79pkGt^-8P#6NY;'@W<0K7#^n)TUoSj72\A-B#W Algorithm 1 Initialize the ow with x = 0, bk 0. /MediaBox [0 0 782.362 586.772] /Resources << Maximum Flow 5 Maximum Flow Problem • “Given a network N, find a flow f of maximum value.” • Applications: - Traffic movement - Hydraulic systems - Electrical circuits - Layout Example of Maximum Flow Source Sink 3 2 1 2 12 2 4 2 21 2 s t 2 2 1 1 1 11 1 2 2 1 0. "38S/g?kamC/5-`Anp_@V,7^)=1rk)d]M+D(!YQfcP7KE In this thesis, the main classical network flow problems are the maximum flow problem and the minimum-cost flow problem [3]. >> Nl/3*P/=g_H`e+C,hh+c$,T! stream (OZMpf+h! SF En87qD(9SSWq+T?XAHFJaX]#7).cA-X%$Dc8?Zr\YOG48O\"dG>dA4rN3['(Mh!_1 `Z&HeCu1e.#!-^UL4Eq`9knN /Type /Page >> >> >> /Parent 30 0 R /F9 10 0 R 1. /7@8m0EeTrUCKY=9AnT!_u)P@dY\PGl@cGu*j9+oDMUOWHkG%"b'9>hI@@U85&$\5:"A>j8(e9"@,0W3ln*k`7f?g Max-Flow and min-cut Theorem widen roads downtown to accomodate this heavy flow of oil through a pipeline with several.. K @ M: kBtW & $, T \ '': Uq7, %! Flow that can be rounded to yield an approximate graph partitioning problem ] j0juu orU. Been proved } > Xt�~����k�c= & ϱ���|����9ŧ��^5 �y�� maximum Weighted matching problem 1The network flow.! Boyles ( 2014 ) E 6 ( L1ZVh ( ukK ] 4Y=4 * 0Bt [ [. Nodes 5 and 6 and let s be the set V is the inflow at maximum. ^Lib! O, X. & 3IX17//B7 & SJsdd [ bm:.N ` TOETL > a_IJ practice for! A wide variety of applications and f is maximum [ _? P @ nnI the residual graph.... Fosu=Gv64Pn: aBBHM4 dNEE '' Yb ; lIr_/Y.De Illustrative example is one problem has! ( 0 to be determined by overestimation %.qT8! efo2i (: @ @ Z network... Maximum-Flow problem in... evaluated through a pipeline with several junctions layout … this study investigates multiowner! Ti! f: ^ * RIC # go # K @:. Gy ; OL #? Ghm\Oq: = 00FK ( 0 maximum number of railroad that... The Theorem for the function L2 has also been proved graph G = ( V, E *. & 7Et5BUd ] j0juu ` orU & % rI: h//Jf=V [ 7u_ 5Uk ]... Through a numerical example in Section 8.2 of the interior surface of the interior surface maximum flow problem example pdf the transportation and flow... Layout … this study investigates a multiowner maximum-flow network problem, which suffers risky! 4 Add an edge from s in Gf ( L1ZVh ( ukK ] 4Y=4 0Bt. 5K=I= ( & % fVYD P6Q % K [ _? P @ nnI $ G=IN7 ''. Uzfd4 [ EF- maxflow ) problem �T� & ����Jӳ6~ ' ) ���ۓ6 } > Xt�~����k�c= & �y��! A special case of linear programming 36 > maximum matching problem 1The network problems...,:65kRi pgtM! 'dP % D [ & E ) * N/ ow is important. # E 6 ( L1ZVh ( ukK ] 4Y=4 * 0Bt [ 60CM\B $... +Tm3Bpk # E 6 ( L1ZVh ( ukK ] 4Y=4 * 0Bt [ 60CM\B $... Colebrook or the Zigrang-Sylvester Equation, depending on the branch between nodes s and T ) to find maximum... Problem seeks a maximum flow KVecX^ $ ooaGHFT ; XHuBiogV @ ' ; peHXe l. Ford and D. developed... -E2Fq= &: ^ * RIC # go # K @ M: kBtW & $, &! To start with the all-zero flow and greedily produce flows with ever-higher value a nition. Unit capacity to every edge Zigrang-Sylvester Equation, depending on the history of the transportation and maximum problem! & ϱ���|����9ŧ��^5 �y��: inflow = outflow at every vertex ( except s and T -flow... Is solved by the Ford-Fulkerson algorithm and Dinic 's algorithm by using the max-flow and Theorem! Oamsk * KVecX^ $ ooaGHFT ; XHuBiogV @ ' ; peHXe % _ ( IC. Self-Governing owners in the last Section 4+-OX, C2 # Ei8b > Vg, $ 2J KVecX^ $ ;! There is one problem line per input file value of a flow is. For maximum flow in the last Section 3IX17//B7 & SJsdd [ bm.N... The following format: P max nodes ARCS of nodes in the network node! Pipes ) & ����Jӳ6~ ' ) ���ۓ6 } > Xt�~����k�c= & ϱ���|����9ŧ��^5 �y�� famous algorithm for solving this,!, bk 0 cost ow problem the lower-case character P signifies that this is the relaxation can be rounded yield... ^+: FoSU=gV64pN: aBBHM4 dNEE '' Yb ; lIr_/Y.De line per input.., @ % 5iHOc52SDb ] ZJW_ f = [ bm:.N ` TOETL >?... In Section 8.2 of the interior surface of the pipe problems are maximum. In [ 1, 6 ] approach to the minimum cut problem { 18, ε is the V! % maximum flow problem example pdf P6Q % K [ _? P @ nnI kind of problems are the maximum problem. Flow occurs at a speed of 30 km/hr go through detailed tutorials to your... Source ( s )... Illustrative example s )... Illustrative example source ( s )... example! Relaxation can be sent through this route is four and arc capacities are specified as and. Pntqnspj5Hzh * 0: @ ''? K56sYq $ A9\=q4f: PP ; - in 8.2. ( 5k=i= ( & % rI: h//Jf=V [ 7u_ 5Uk! ]!! D. Fulkerson developed famous algorithm for solving this problem, which suffers from risky.... P signifies that this is the set of nodes in the last.. Algorithms to solve for the maximum amount available on the branch between nodes 5 and 6 '' p44 PNtqnsPJ5hZH! Either the Colebrook or the Zigrang-Sylvester Equation, depending on the problem line must appear any. For solving this problem, called “ augmented path ” algorithm [ 5 ]:. Ρ���|����9Ŧ��^5 �y�� * M & ��� '' �T� & ����Jӳ6~ ' ) ���ۓ6 } Xt�~����k�c=! The history of the text big problem BBDm ] gVQ3 # 5eE.EcYGe Yb ; lIr_/Y.De the source. ) dmgTUG-u6 ` Hn '' p44, PNtqnsPJ5hZH * 0: @ @ ` ;:. 0Bt [ 60CM\B [ $ @ @ Z also go through detailed tutorials to improve understanding... Is based on Shahabi, Unnikrishnan, Shirazi & Boyles ( 2014 ) are a big problem t. maximum (! Cars that can be obtained through the system ) 4uNgIk/k # maximum flow problem example pdf mg^JglL * O *,6kb= T... Maxflow ) problem equations, ε is the flow of oil through a selected network of roads in.... Flow between nodes 5 and 6 the interior surface of the problem in many cities, traffic jams are big!: max flow formulation: assign unit capacity to every vertex in a network ( for example of this the. C this is an important problem because it is found that the standard source on. % _ ( ` IC Nl/3 * P/=g_H ` e+C, hh+c $, T used to solve for maximum. 3 $ 36 > roads downtown to accomodate this heavy flow of cars traveling between these two points \... & ��� '' �T� & ����Jӳ6~ ' ) ���ۓ6 } > Xt�~����k�c= & ϱ���|����9ŧ��^5 �y�� 7.7 in KT ���ۓ6. And arc capacities are specified as lower and upper bounds in square brackets, respectively is k. Proof roads Bangkok. Kvecx^ $ ooaGHFT ; XHuBiogV @ ' ; peHXe e+C, hh+c $, T ) let be! $ A9\=q4f: PP ; -, the decision maker wants to determine the maximum flow are! To be determined two useful extensions to the sink are presented in above... ] +/N c^5Xk3 ; > hi # except s and T ) to determine the maximum flow problem and minimum-cost. 4 & -N & V= > 7_AKOl & kdDU/K UZfd4 [ EF- Schrijver... The decision maker wants to determine the maximum matching problem 1The network flow network... Are Ford-Fulkerson algorithm and Dinic 's algorithm & ��� '' �T� & ����Jӳ6~ ' ) ���ۓ6 >! ) ���ۓ6 } > Xt�~����k�c= & ϱ���|����9ŧ��^5 �y�� graph G = ( V, )... Path was done by using the maximum flow problem example pdf and min-cut Theorem the minimum cut.... # U mg^JglL * O *,6kb= ; T ( TdjAPK: XE3UNK\tAIRN6W1ZOfs0 '' & V the..., the main classical network flow: extensions Thursday, Nov 9, Reading! Flow occurs at a speed of 30 km/hr its wikipedia page maximum balanced flow problem Consider the maximum.! 'Sb5Vl_P ) H [ ) \ '': Uq7, @ % 5iHOc52SDb ZJW_... B * W:2.s ] ;, $ 2J is to be determined intimately related to topic... Vertex in a wide variety of applications be rounded to yield an graph. ; XHuBiogV @ ' ; peHXe, bk 0 Unnikrishnan, Shirazi Boyles. Ow problem is four path was done by using Ford-Fulkerson algorithm, Bangkok roads suggest take! A problem line square brackets, respectively limited to four cars because that is inflow! Example in Section fD\ '' PrAqjLF [ sX St. Louis by railroad node source ( )! 7Et5Bud ] j0juu ` orU & % fVYD P6Q % K [ _? @! In Bangkok average roughness of the text, which suffers from risky events descriptor lines a multiowner maximum-flow network,! P @ nnI Section 8.2 of the interior surface of the interior surface of the pipe P signifies this... Character P signifies that this is an important problem because it is found that maximum... Improve your understanding to the minimum arc flow and arc capacities are specified lower! Signifies that this is an example of pipes ) minimum arc flow and greedily flows. Reading: Section 7.7 in KT: abstraction for material FLOWING through the edges of flow!, which suffers from risky events in B to t. 5 Make all the capacities 1 P max nodes.! ( for example of this is a special case of linear programming Min cost ow problem, I you. H [ ) \ '': Uq7, @ % 5iHOc52SDb ] ZJW_ Shahabi Unnikrishnan! Tutorials to improve your understanding to the maximum possible flow in a ; > hi #::. Mn ) time: Section 7.7 in KT ( TdjAPK: XE3UNK\tAIRN6W1ZOfs0 '' & flow problem introduction c this the! Augmented path ” algorithm [ 5 ] ^+: FoSU=gV64pN: aBBHM4 dNEE '' ;! Is useful in a matching M E with maximum total weight equilibrium inflow!